LSTD: A Low-Shot Transfer Detector for Object Detection
نویسندگان
چکیده
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot
منابع مشابه
DSSD : Deconvolutional Single Shot Detector
The main contribution of this paper is an approach for introducing additional context into state-of-the-art general object detection. To achieve this we first combine a state-ofthe-art classifier (Residual-101 [14]) with a fast detection framework (SSD [18]). We then augment SSD+Residual101 with deconvolution layers to introduce additional largescale context in object detection and improve accu...
متن کاملA novel shot boundary detection framework
Shot boundary detection servers as a preliminary step to structure the content of videos. Up to now, a large number of methods have been proposed. We give a brief overview of previous works with a novel view, focusing on the solutions of the two main disturbances, i.e., abrupt illuminance change and great camera or object motion. Then this paper presents a novel shot boundary detection framewor...
متن کاملOne Shot Detection with Laplacian Object and Fast Matrix Cosine Similarity
One shot, generic object detection involves searching for a single query object in a larger target image. Relevant approaches have benefited from features that typically model the local similarity patterns. In this paper, we combine local similarity (encoded by local descriptors) with a global context (i.e., a graph structure) of pairwise affinities among the local descriptors, embedding the qu...
متن کاملSingle-Shot Refinement Neural Network for Object Detection
For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and main...
متن کاملExtend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network
Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current object detection field, which uses fully convolutional neural network to detect all scaled objects in an image. Deconvolutional Single Shot Detector (DSSD) is an approach which introduces more context information by adding the deconvolution module to SSD. And the mean Average Precision (mAP) of DSSD on PASCAL VO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018